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ABSTRACT

Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. LDA in the

binary-class case has been shown to be equivalent to linear regression with the class label as the output. This implies that

LDA for binary class classification can be formulated as a least square problem. However many real-world applications

involves multi-class classification, where a least square formulation for LDA is desirable. Previous studies have shown

certain relationship between multivariate linear regression and LDA. Many of these studies show that multivariate linear

regression with a specific class indicator matrix as the output can be applied as a pre-processing step for LDA. However,

directly casting LDA as a least squares problems remains open for the multi-class case.

In this paper used Fisher Linear Discriminant in an original space and finding the coefficients, compare these

coefficients with the coefficients of least square method, to show that these methods are equivalent in directions, this

equivalent happen when the statistics of Rayleigh Coefficient is maximized.

By using the Iris dataset was introduced by R. A. Fisher as an example for discriminant analysis, that the data

report four characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with the

class label as output. We took just two species to explain the equivalent between LDA and LS.
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1. INTRODUCTION

Linear Discriminant Analysis (LDA) is a traditional statistical method which has proven successful on classification and

dimensionality reduction problems (6). The procedure is based on an Eigen value resolution and gives an exact solution of

the maximum of the inertia but this method fails for a nonlinear problem.

The original LDA formulation, known as the Fisher linear Discriminant Analysis (FLDA)(5) deals with binary-

class classification. The key idea in (FLDA) is to look for a direction that separates the class mean well (when projected

onto that direction) while achieving a small variance around these means. FLDA bears strong connections to linear

regression with the class label as the output for classification. It has been shown(3, 10) that FLDA is equivalent to a least

square problem.

Fisher’s Linear Discriminant Analysis separates multivariate data with different classes nicely in the linear

projection. In a two-class data separation, FDA tries to find the projection vector such that the between-class scatter matrix

International Journal of Applied Mathematics
and Statistical Sciences (IJAMSS)
ISSN (P): 2319–3972; ISSN (E): 2319–3980
Vol. 10, Issue 2, Jul–Dec 2021; 71–80
© IASET



72 Chro

Impact Factor (JCC): 6.2284 NAAS Rating 3.45

is maximized and the within-class scatter matrix is minimized. Then the linear projection of this vector will ensure the

greatest separatability for the two classes’ data(2).

The intuition behind Fisher’s linear Discriminant (FLD) consists of looking for a vector of compounds w such that, when

a set of training samples are projected in to it, the class centres are far apart while the spread within each class is small,

consequently producing a small overlap between classes(12). This is done by maximizing a cost function known in some

contexts as Rayleigh Coefficient,  wJ . The data taken from “Edgar Anderson (1935). “The irises of the Gaspé

Peninsula”. Bulletin of the American Iris Society 59: 2–5” (4)

Theoretical Part

1. Linear Discriminant

More formally one looking for a function
Df RX: , such that    zx fandf are similar whenever

zx and are, and different otherwise. Similarity is usually measured by class membership and Euclidean distance. In the

special case in the linear Discriminant analysis one is seeking a linear function, i.e. a set of projections

  xWx Tf  DNRW

where the matrix W is chosen, such that a contrast criterion G is optimized, in some cases with respect to a set

of constraints S , i.e.

 WGmax subject to   SW  (1)

This setup is absolutely equivalent to e.g. principle component analysis where the contrast criterion would be that

of maximal variance (or least mean square error) and the constraint set would be that of orthogonality of the matrixW .

However, PCA is an unsupervised technique and does not use any label. There is no principle that the direction found by

PCA will be particularly discriminative.

To simplify the presentation we will in the following only consider one-dimensional Discriminant functions, i.e.

f is of the form  xw f . However, most results can easily be generalized to the multidimensional case.(10, 12)

2. Fisher's Discriminant

Probably the most well known example of a linear Discriminant is Fisher's Discriminant Fisher's idea was to look for a

direction w that separates the class means well ( when project onto the found direction ) while achieving a small variance

around these means(8). The hope is that it is easy to decide for either of the two classes from this projection with a small

error. The quantity measuring the difference between the means is called between class variance and the quantity

measuring the variance around these class means is called within class variance, respectively. Then the goal is to find a

direction that maximizes the between class variance while minimizing the within class variance at the same time. This is

illustrated in Figure bellow.
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Figure1: Fisher Discriminant Analysis(13)

As shown in left graph, the two-class data is linearly projected onto a direction (vector) of 21



mm , which is not

a good separation as there are a lot data from two class overlap with each other. For the right graph, the two-class data are

separated in a nice way that they have minimum overlapping.

To describe this mathematically let X denote the space of observations (e.g. NRX ) and Y the set of

possible labels (here Y = {+1, -1}). Furthermore, let      YX  MM yy ,,.....,, 11 xxZ denote the training

sample of size M and denote by   1,1  yy ZZ x and   1,2  yy ZZ x the split in to the two

classes of size iiM Z . Define 21 mm and to be the empirical class means. i.e.
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Similarly, we can compute the means of the data projected onto some direction W by
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(2)
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T mW

i.e. the means i
of the projection means im

. The variances
2
2

2
1 , of the projected data can be expressed as
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(3)

Then maximizing the between class variance and minimizing the within class variance can be achieved by

maximizing

   
2
2

2
1

2
21






WG
(4)

Which will yield a direction W such that the ratio of between-class variance (i.e. separation) and within class

variance (i.e. overlap) is maximal. Now, substituting the expression (2) for the means and the expression (3) for the

variance into above equation (4) yields
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 
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Where we define the between and within class scatter matrices WB  SandS as

  TBS 1212 mmmm   
 


2,1

2

i Zx
iW

i

S mx (6)

And the vector of coefficients as

 12
1 mmW  

WS (7)

It is straight forward to check that (4) is absolutely equivalent to (5). This perfectly fits into the framework (1)

with an empty constraints setS . The equation  WG is often referred to as a Rayleigh coefficient.(7, 8, 9, 10, 12)

3. Connection to Least Square

The Fisher Discriminant problem described above bears strong connections to least squares approaches for classification.

Classically, one is looking for a linear Discriminant function, now including a bias term, i.e.

  bf T  xWx (9)

such that on the training sample the sum of squares error between the outputs
 if x

and the known targets iy

is small, i.e. in a (linear) least squares approach one minimizing the sum of square

    
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The least squares problem
 bb ,min , WW 

can be written in matrix rotation as
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where  21 XXX  is a matrix containing all training examples partitioned according to the labels 1 , and

i1 is a vector of once of corresponding length. The solution to a least rectangle problem of the form
2

bA x can be

computed by using the pseudo-inverse of A , i.e.   bAAAbA TT 1†  X assuming that AAT
is not singular.

Then IAA † and thus a necessary and sufficient condition for the solution X to the least square problem

is   bAAA TT x . Appling this to (11) yields
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multiplying these matrices and using the definition of the sample means and within class scatter for Fisher yields:
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Using the second equation in (12) to solve for b yields
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Substituting this into first equation of (12) and using a few algebraic manipulations, especially the relation

ba
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2
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Now, since still WBS is in the direction of  12 mm  , there exists a scalar R such that
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Then using (15) in (14) yields:

   12
1

12 mmWmmW  
WW  SS  . (16)

This shows that the solution to the least square problem is in the same direction as the solution of Fisher's

Discriminant, although it will have a different length. But as we already noticed, we are only interested in the direction

on W , not its length and hence the solutions are identical.(1,7,8,10,11)

Practical Part

This paper has been prepared to clear that the LDA is equivalent to least square regression entering the value of

compounds w and a statistic Rayleigh coefficient measure the ration of projected class means to projected intra-class

variance we obtain the optimal solution, means maximizing the statistic Rayleigh coefficient when a set of training sample

are projected into it the class centres are far apart while the spread within each class is small, by using packages SPSS and

MATLAB, and for the data see Appendix (A).

From equation (7), for LDA, the vector of coefficients i.e. Standardized Canonical Discriminant Function

Coefficients are:
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and from equation (5) the value of statistic Rayleigh Coefficient

  88.3829WG .

From equation (16), for LS, the vector of coefficients are
























337.

765.

050.

150.

W

and from equation (5) the value of statistic Rayleigh coefficient   1694.76WG

It is clear that from the values of both two coefficients and statistic of Rayleigh coefficients of Linear

Discriminant and least Squares the separate of between-class scatter matrix is maximized and the within-class scatter

matrix is minimized that means there are an equivalent between them, because they have the same direction, although it

will have a different length. But as we already noticed, we are only interested in the direction on W , not its length. To be

certain from table (1) bellow of classification result from SPSS analysis clear that 100.0% of original grouped cases

correctly classified in this data. In general to be the equivalent is strong there must be the ratio of misclassification is small.

Table 1: Classification Results

CONCLUSION

From the analysis of Iris Flower dataset was introduced by R. A. Fisher(4) as an example for Discriminant analysis, that the

data report four characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with

the class label as output. We took just two species to explain the equivalent between LDA and LS clear that there is an

equivalent between the Linear Fisher Diacriminant and Least Squares method means that the separate of between-class

scatter matrix is maximized and the within-class scatter matrix is minimized, because they have the same direction,

although it will have a different length.
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Appendix (A)

Iris flowers dataset was introduced by R. A. Fisher (4) as an example for Discriminant analysis, that the data report four

characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with the class label

as output. We took just two species to explain the equivalent between LDA and LS.

Table 2
Fisher's Iris Data

Sepal Length Sepal Width Petal Length Petal Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
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Table 2 Contd.,
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.2 setosa
4.7 3.2 1.6 0.2 setosa
4.8 3.1 1.6 0.2 setosa
5.4 3.4 1.5 0.4 setosa
5.2 4.1 1.5 0.1 setosa
5.5 4.2 1.4 0.2 setosa
4.9 3.1 1.5 0.2 setosa
5.0 3.2 1.2 0.2 setosa
5.5 3.5 1.3 0.2 setosa
4.9 3.6 1.4 0.1 setosa
4.4 3.0 1.3 0.2 setosa
5.1 3.4 1.5 0.2 setosa
5.0 3.5 1.3 0.3 setosa
4.5 2.3 1.3 0.3 setosa
4.4 3.2 1.3 0.2 setosa
5.0 3.5 1.6 0.6 setosa
5.1 3.8 1.9 0.4 setosa
4.8 3.0 1.4 0.3 setosa
5.1 3.8 1.6 0.2 setosa
4.6 3.2 1.4 0.2 setosa
5.3 3.7 1.5 0.2 setosa
5.0 3.3 1.4 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
5.5 2.3 4.0 1.3 versicolor
6.5 2.8 4.6 1.5 versicolor
5.7 2.8 4.5 1.3 versicolor
6.3 3.3 4.7 1.6 versicolor
4.9 2.4 3.3 1.0 versicolor
6.6 2.9 4.6 1.3 versicolor
5.2 2.7 3.9 1.4 versicolor
5.0 2.0 3.5 1.0 versicolor
5.9 3.0 4.2 1.5 versicolor
6.0 2.2 4.0 1.0 versicolor
6.1 2.9 4.7 1.4 versicolor
5.6 2.9 3.6 1.3 versicolor
6.7 3.1 4.4 1.4 versicolor
5.6 3.0 4.5 1.5 versicolor
5.8 2.7 4.1 1.0 versicolor
6.2 2.2 4.5 1.5 versicolor
5.6 2.5 3.9 1.1 versicolor
5.9 3.2 4.8 1.8 versicolor
6.1 2.8 4.0 1.3 versicolor
6.3 2.5 4.9 1.5 versicolor
6.1 2.8 4.7 1.2 versicolor
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Table 2 Contd.,
6.4 2.9 4.3 1.3 versicolor
6.6 3.0 4.4 1.4 versicolor
6.8 2.8 4.8 1.4 versicolor
6.7 3.0 5.0 1.7 versicolor
6.0 2.9 4.5 1.5 versicolor
5.7 2.6 3.5 1.0 versicolor
5.5 2.4 3.8 1.1 versicolor
5.5 2.4 3.7 1.0 versicolor
5.8 2.7 3.9 1.2 versicolor
6.0 2.7 5.1 1.6 versicolor
5.4 3.0 4.5 1.5 versicolor
6.0 3.4 4.5 1.6 versicolor
6.7 3.1 4.7 1.5 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 4.1 1.3 versicolor
5.5 2.5 4.0 1.3 versicolor
5.5 2.6 4.4 1.2 versicolor
6.1 3.0 4.6 1.4 versicolor
5.8 2.6 4.0 1.2 versicolor
5.0 2.3 3.3 1.0 versicolor
5.6 2.7 4.2 1.3 versicolor
5.7 3.0 4.2 1.2 versicolor
5.7 2.9 4.2 1.3 versicolor
6.2 2.9 4.3 1.3 versicolor
5.1 2.5 3.0 1.1 versicolor
5.7 2.8 4.1 1.3 versicolor






