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ABSTRACT

Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. LDA in the
binary-class case has been shown to be eguivalent to linear regression with the class label as the output. This implies that
LDA for binary class classification can be formulated as a least square problem. However many real-world applications
involves multi-class classification, where a least square formulation for LDA is desirable. Previous studies have shown
certain relationship between multivariate linear regression and LDA. Many of these studies show that multivariate linear
regression with a specific class indicator matrix as the output can be applied as a pre-processing step for LDA. However,

directly casting LDA as a least squares problems remains open for the multi-class case.

In this paper used Fisher Linear Discriminant in an original space and finding the coefficients, compare these
coefficients with the coefficients of least square method, to show that these methods are equivalent in directions, this

equivalent happen when the statistics of Rayleigh Coefficient is maximized.

By using the Iris dataset was introduced by R. A. Fisher as an example for discriminant analysis, that the data
report four characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with the
classlabel as output. We took just two species to explain the equivalent between LDA and LS.
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1. INTRODUCTION

Linear Discriminant Analysis (LDA) is a traditional statistical method which has proven successful on classification and
dimensionality reduction problems ©. The procedure is based on an Eigen value resolution and gives an exact solution of

the maximum of the inertia but this method fails for a nonlinear problem.

The original LDA formulation, known as the Fisher linear Discriminant Analysis (FLDA)® deals with binary-
class classification. The key idea in (FLDA) is to look for a direction that separates the class mean well (when projected
onto that direction) while achieving a small variance around these means. FLDA bears strong connections to linear
regression with the class label as the output for classification. It has been shown® '? that FLDA is equivalent to a least

square problem.

Fisher’s Linear Discriminant Analysis separates multivariate data with different classes nicely in the linear

projection. In a two-class data separation, FDA tries to find the projection vector such that the between-class scatter matrix
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is maximized and the within-class scatter matrix is minimized. Then the linear projection of this vector will ensure the

greatest separatability for the two classes’ data®.

The intuition behind Fisher’s linear Discriminant (FLD) consists of looking for a vector of compounds W such that, when
a set of training samples are projected in to it, the class centres are far apart while the spread within each class is small,
consequently producing a small overlap between classes'™®. This is done by maximizing a cost function known in some
contexts as Rayleigh Coefficient,J(W). The data taken from “Edgar Anderson (1935). “The irises of the Gaspé
Peninsula”. Bulletin of the American Iris Society 59: 2-5”

Theoretical Part

1. Linear Discriminant

More formally one looking for a function f : X' — R°, such that f(x) and f(z) are similar whenever

X and z are, and different otherwise. Similarity is usually measured by class membership and Euclidean distance. In the

special casein the linear Discriminant analysis one is seeking alinear function, i.e. a set of projections
f(x)=WT'x W e RMP

where the matrix W is chosen, such that a contrast criterion G is optimized, in some cases with respect to a set

of constraints S, i.e.

max G(W) subjectto W € S o)

This setup is absolutely equivalent to e.g. principle component analysis where the contrast criterion would be that

of maximal variance (or least mean square error) and the constraint set would be that of orthogonality of the matrix WV .
However, PCA is an unsupervised technique and does not use any label. There is no principle that the direction found by

PCA will be particularly discriminative.

To simplify the presentation we will in the following only consider one-dimensional Discriminant functions, i.e.

f f = (w-x)

isof the form . However, most results can easily be generalized to the multidimensional case.(10, 12)

2. Fisher's Discriminant

Probably the most well known example of a linear Discriminant is Fisher's Discriminant Fisher's idea was to look for a
direction W that separates the class means well ( when project onto the found direction ) while achieving a small variance
around these means®. The hope is that it is easy to decide for either of the two classes from this projection with a small
error. The quantity measuring the difference between the means is called between class variance and the quantity
measuring the variance around these class means is called within class variance, respectively. Then the goal is to find a
direction that maximizes the between class variance while minimizing the within class variance at the same time. This is
illustrated in Figure bellow.
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Figurel: Fisher Discriminant Analysis™
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As shown in left graph, the two-class datais linearly projected onto a direction (vector) of mMy— Mz, which is not

a good separation as there are alot data from two class overlap with each other. For the right graph, the two-class data are

separated in a nice way that they have minimum overlapping.

To describe this mathematically let X denote the space of observations (eg. X < R™ ) and Y the set of
possible labels (here Y = {+1, -1}). Furthermore, let Z = {(Xl, yl), ..... ,(X,\,I ' Yu )}g X xY denote the training
sample of size M and denote by Z, = {(X, y)e Z‘y=1} and Z, = {(X, y)e Z\y: —l} the split in to the two
classesof size M, = |Zi|. Define M, and M, to be the empirical class means. i.e.

mi:M%Zx

XeZ;

Similarly, we can compute the means of the data projected onto some direction W by

m = 2 WX
XeZ; (2)
=W'm

2.2
i.e. the means m of the projection meansmi . Thevariances 515 2 of the projected data can be expressed as

s?=3 (Whx-mf
XeZ; (3)

Then maximizing the between class variance and minimizing the within class variance can be achieved by
maximizing

G(W):(n]—mz)z

2 2
S, +S, (@
Which will yield a direction W such that the ratio of between-class variance (i.e. separation) and within class
variance (i.e. overlap) is maximal. Now, substituting the expression (2) for the means and the expression (3) for the

variance into above eguation (4) yields
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wTsow
G(W)= ®
w %NW
Where we define the between and within class scatter matrices  S; and S, as

SB:(mZ_ml)(mZ_ml)T SNZZZ(X_mi)Z (6)

i=1,2xeZ;
And the vector of coefficients as
W =S, (m,-m,) (7)

It is straight forward to check that (4) is absolutely equivalent to (5). This perfectly fits into the framework (1)

with an empty constraints set S . The equation G(W) is often referred to as a Rayleigh coefficient.(” & 9102

3. Connection to Least Square

The Fisher Discriminant problem described above bears strong connections to least squares approaches for classification.

Classicaly, oneislooking for alinear Discriminant function, now including abiasterm, i.e.

f(x)=W'x+b @)

such that on the training sample the sum of squares error between the outputs f (Xi ) and the known targets Y
issmall, i.e. in a(linear) least squares approach one minimizing the sum of square

EW.,b)= S (f(x)-y)'= S(W'x+b-yJ
(X,Y)eZ (X,yEZ (10)

min,, , E(W,b)

The least squares problem can be written in matrix rotation as

e

(11

min
W,b

where X = [Xl Xz] is a matrix containing all training examples partitioned according to the labels+ 1, and
2
1i is a vector of once of corresponding length. The solution to a least rectangle problem of the form HAX — bH can be

computed by using the pseudo-inverse of A, i.e. X* = A'b= (AT A)_l A"b assuming that AT A is not singular.
Then ATA=1 and thus a necessary and sufficient condition for the solution X'to the least square problem

is(ATA)x" = ATb. Appling this to (11) yields
X, X[x7 W] [% X1
L Lx; Ljlb] [§ L]L
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multiplying these matrices and using the definition of the sample means and within class scatter for Fisher yields:
Sy +Mmm;  Mm, +M,m,|[W _ M,m, - M,m, (12)
(M;m; +M,m,)’ M, +M, b M, -M,

Using the second equation in (12) to solve for b yields

oo Mo My (Mymy + My, ) W (13)

M1+ M2

Substituting this into first equation of (12) and using a few algebraic manipulations, especially the relation

aa2ab

~a4b = 24b one obtains:

M, M M2+M 2
12 i™2 _
[3N+ M1+MZSBJW+ MW (m,-m,)=0

(14)

Now, since still SBW isin the direction of (m2 — ml), thereexistsascdar @ € R such that

M M M2+M 2
12 _ | M{tMS _ (15)
MM, Sg\W = (M1+M2 ~a (m,-m,)

Then using (15) in (14) yields:
SyW=a(m,-m,) & W =a S;(m,-m,)- (16)

This shows that the solution to the least square problem is in the same direction as the solution of Fisher's

Discriminant, athough it will have a different length. But as we aready noticed, we are only interested in the direction

on W, not its length and hence the solutions are identical.+"#1°1)

Practical Part

This paper has been prepared to clear that the LDA is equivalent to least square regression entering the value of
compounds W and a statistic Rayleigh coefficient measure the ration of projected class means to projected intra-class
variance we obtain the optimal solution, means maximizing the statistic Rayleigh coefficient when a set of training sample
are projected into it the class centres are far apart while the spread within each class is small, by using packages SPSS and
MATLAB, and for the data see Appendix (A).

From equation (7), for LDA, the vector of coefficients i.e. Standardized Canonical Discriminant Function

Coefficients are:

— 583

| -.303

| 1.069
547

WWw.iaset.us editor @ aset.us



76 Chro

and from equation (5) the value of statistic Rayleigh Coefficient
G(W)=188.3829.
From eguation (16), for LS, the vector of coefficients are

150

.050
W =

—.765

-.337

and from equation (5) the value of statistic Rayleigh coefficient G(W) =76.1694

It is clear that from the values of both two coefficients and statistic of Rayleigh coefficients of Linear
Discriminant and least Squares the separate of between-class scatter matrix is maximized and the within-class scatter

matrix is minimized that means there are an equivalent between them, because they have the same direction, although it

will have a different length. But as we aready noticed, we are only interested in the direction on W, not its length. To be
certain from table (1) bellow of classification result from SPSS analysis clear that 100.0% of original grouped cases

correctly classified in this data. In general to be the equivalent is strong there must be the ratio of misclassification is small.

Table 1: Classification Results

Predicted Group
Membership
SP -1 1 Total
Original Count -1 50 0 50
1 0 a0 50
% -1 100.0 0 100.0
1 0 100.0 100.0

a. 100.0% of original grouped cases correctly classified.

CONCLUSION

From the analysis of Iris Flower dataset was introduced by R. A. Fisher® as an example for Discriminant analysis, that the
data report four characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with
the class label as output. We took just two species to explain the equivalent between LDA and LS clear that there is an
equivalent between the Linear Fisher Diacriminant and Least Squares method means that the separate of between-class
scatter matrix is maximized and the within-class scatter matrix is minimized, because they have the same direction,
although it will have a different length.
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Appendix (A)

Iris flowers dataset was introduced by R. A. Fisher  as an example for Discriminant analysis, that the data report four

characteristics (sepal width, sepal length, pedal width and pedal length) of three species of Iris flower with the class label

as output. We took just two species to explain the equivalent between LDA and LS.

Table?2
Fisher'siIrisData
" Sepal Length | "‘Sepal Width | "“Petal Length | "* Petal Width | * Species
51 35 14 0.2 setosa
49 3.0 14 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 15 0.2 setosa
5.0 3.6 14 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 14 0.3 setosa
5.0 3.4 15 0.2 setosa
4.4 29 14 0.2 setosa
49 3.1 15 0.1 setosa
5.4 3.7 15 0.2 setosa
4.8 34 1.6 0.2 setosa
4.8 3.0 14 0.1 setosa
4.3 3.0 11 0.1 setosa
5.8 4.0 1.2 0.2 setosa
57 4.4 15 0.4 setosa
54 3.9 13 0.4 setosa
51 35 14 0.3 setosa
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Table 2 Contd.,
5.7 3.8 1.7 0.3 setosa
51 3.8 15 0.3 setosa
54 34 1.7 0.2 setosa
5.1 3.7 15 0.4 setosa
46 3.6 1.0 0.2 setosa
51 3.3 1.7 0.5 setosa
4.8 34 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 34 1.6 0.4 setosa
5.2 35 15 0.2 setosa
5.2 34 14 0.2 setosa
4.7 3.2 1.6 0.2 setosa
4.8 31 1.6 0.2 setosa
54 34 15 0.4 setosa
5.2 41 15 0.1 setosa
55 4.2 14 0.2 setosa
49 31 15 0.2 setosa
5.0 3.2 12 0.2 setosa
55 35 13 0.2 setosa
49 3.6 14 0.1 setosa
4.4 3.0 13 0.2 setosa
51 34 15 0.2 setosa
5.0 35 13 0.3 setosa
4.5 2.3 13 0.3 setosa
4.4 3.2 13 0.2 setosa
5.0 35 1.6 0.6 setosa
51 3.8 1.9 0.4 setosa
4.8 3.0 14 0.3 setosa
51 3.8 1.6 0.2 setosa
4.6 3.2 14 0.2 setosa
5.3 3.7 15 0.2 setosa
5.0 3.3 14 0.2 setosa
7.0 3.2 47 14 versicolor
6.4 3.2 45 15 versicolor
6.9 3.1 49 15 versicolor
55 2.3 40 1.3 versicolor
6.5 2.8 46 15 versicolor
5.7 2.8 45 1.3 versicolor
6.3 3.3 47 1.6 versicolor
49 24 3.3 1.0 versicolor
6.6 2.9 46 1.3 versicolor
5.2 2.7 3.9 14 versicolor
5.0 2.0 35 1.0 versicolor
5.9 3.0 42 15 versicolor
6.0 2.2 40 1.0 versicolor
6.1 2.9 47 14 versicolor
5.6 2.9 3.6 1.3 versicolor
6.7 3.1 4.4 14 versicolor
5.6 3.0 45 15 versicolor
5.8 2.7 41 1.0 versicolor
6.2 2.2 45 15 versicolor
5.6 25 3.9 11 versicolor
5.9 3.2 4.8 1.8 versicolor
6.1 2.8 40 1.3 versicolor
6.3 25 49 15 versicolor
6.1 2.8 47 12 versicolor
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Table 2 Contd.,
6.4 2.9 43 1.3 versicolor
6.6 3.0 4.4 14 versicolor
6.8 2.8 4.8 14 versicolor
6.7 3.0 5.0 17 versicolor
6.0 2.9 45 15 versicolor
5.7 2.6 35 1.0 versicolor
55 24 3.8 11 versicolor
55 24 3.7 1.0 versicolor
5.8 2.7 3.9 12 versicolor
6.0 2.7 5.1 1.6 versicolor
54 3.0 45 15 versicolor
6.0 34 45 1.6 versicolor
6.7 3.1 47 15 versicolor
6.3 2.3 4.4 1.3 versicolor
5.6 3.0 41 1.3 versicolor
55 25 40 1.3 versicolor
55 2.6 4.4 12 versicolor
6.1 3.0 46 14 versicolor
5.8 2.6 40 12 versicolor
5.0 2.3 3.3 1.0 versicolor
5.6 2.7 42 1.3 versicolor
5.7 3.0 42 12 versicolor
5.7 2.9 42 1.3 versicolor
6.2 2.9 43 1.3 versicolor
5.1 25 3.0 11 versicolor
5.7 2.8 41 1.3 versicolor
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